

SnowEx 2019 Workshop, September 17-18
Baltimore, Maryland

SnowEx 2020

The SnowEx 2020 Campaign consists of coordinated airborne and field-based experiments in the Western U.S. to test instruments under a variety of snow conditions. This effort includes two major components:

1. A time series experiment with UAVSAR

- 13 sites, spanning 5 states
- December 18, 2019 to May 6, 2020, with weekly to bi-weekly (fortnightly) aircraft overflights and field campaigns

2. A detailed experiment on Grand Mesa, Colorado

- 5-day snow-off campaign November 4-8, 2019
- 10-day snow-on campaign January 27 February 7, 2020

Alignment with THP16 Science Plan

SnowEx 2020: Responds to 6 out of 7 Science Plan Gaps

- Snow climates (Forest, mountain, prairie, maritime)
- Wet snow, accumulation and melt (time series)
- Surface energetics (surface temperature)

SnowEx 2020: Responds to all Science Plan Mission Critical, Crucial, Important priorities

- X-band, dual Ku-band SAR (SWESARR)
- L-band InSAR (UAVSAR)
- Ka-band InSAR (GLISTIN-A)
- LiDAR (ASO, CRREL HeliPod)
- Thermal IR (UW, CRREL HeliPod)
- X-, K-, Ka-band Passive microwave (SWESARR)
- Hyperspectral imaging (ASO, CRREL HeliPod)
- Modeling / Data Assimilation (SEUP, NOHRSC)
- Photogrammetry / Structure from Motion (airborne and satellite based)
- FMCW radar (similar to IceBridge SnowRadar; University of Alabama)

L-band InSAR: Previous Results

1. A time series experiment with UAVSAR

- Correlation increases with coherence
 [PALSAR, Deeb et al., in review]
- SnowEx17 UAVSAR phase change correlated with total snow depth

[UAVSAR, Marshall et al., AMS 2019]

L-band InSAR: Inverting for depth change

[e.g., Gunnerison et al., 2001]

$$\Delta d = -rac{\Delta\phi\,\lambda}{4\pi}\,rac{1}{\coslpha-\sqrt{\epsilon_s-\sin^2lpha}}$$

SnowEx 2020 - UAVSAR

- L-band Interferometric Synthetic Aperture Radar
 - L-Band (1 GHz; 23 cm)
 - Weekly to biweekly flights, Dec-May
 - Relationship between change in SWE/depth vs. change in InSAR phase
- Validation for a range of snow climates, vegetation, and during accumulation & melt
- Opportunity for further validation in preparation for NASA-ISRO SAR (NISAR) satellite mission, https://nisar.jpl.nasa.gov
 - L- and S-band (12 cm)
 - 12-day (or shorter) exact repeat orbit
 - Launch date: Dec. 2021
 - 3-10 m resolution

North Slope Brooks Range, AK [from E. Deeb]

Previous studies have found agreement in accumulation patterns, compared to LiDAR and magnaprobe depth observations

SnowEx 2020 - Time Series

Sites cover a wide range of snow climatology, land cover, and topography

Leveraging THP16/17 projects, Critical Zone Observatories (CZO) sites, LTER sites, and other long term observations in critical watersheds

[Chris Hiemstra, 2019]

SnowEx 2020 – Time Series

Focus on variability of snow and landscape conditions throughout the accumulation and melt season.

Ground observations of:

- Change in snow depth and SWE
- Snow stratigraphy, density, and liquid water content
- Ground-based radar (CSU, UNM, BSU)
- Terrestrial LiDAR (CRREL, BSU)
- Field spectrometer (Univ UT, UNR)

Airborne observations of:

- L-band InSAR (UAVSAR)
- Airborne LiDAR (ASO, CRREL, etc)
- Ka-band InSAR (GLISTIN-A (CA))

[Liston 20-yr N. America SnowModel simulation]

SnowEx 2020 - Schedule

SnowEx 2020 - Grand Mesa

Primary Objectives:

- 1. Collect data needed test and validate SWE retrieval from active and passive microwave sensors
- 2. Collect thermal IR data to assess the value of kilometerscale satellite IR observations (e.g., GOES-16/17) for snow energy balance modeling
 - Focus on flat, open shrubland and meadows and transitioning into forests
 - · Ground observations of:
 - Snow depth and surface temperature spatial variability
 - Vertical profiles of snow stratigraphy and microstructure

Grand Mesa Airborne instruments

Airborne observations of:

- X-, dual Ku-band radar (NASA GSFC SWESARR)
- X, K-, Ka-band radiometer (NASA GSFC SWESARR)
- Thermal IR (U. of Washington)
- LiDAR and Hyperspectral (Quantum Spatial)
- L-band InSAR (UAVSAR)
- FMCW Snow Radar (U. of Alabama)
- Gamma Airborne Survey (NOAA NOHRSC)

Grand Mesa – SWESARR

Snow Water Equivalent Synthetic Aperture Radar & Radiometer (SWESARR)

- Recently developed GSFC instrument
- A <u>single antenna</u> for a triple-band SAR & Radiometer

			BW	
	Band	f (GHz)	(MHz)	Pol
Active	X	9.65	200	VV,VH
Active	Ku-Lo	13.60	200	VV, VH
Active	Ku-Hi	17.25	100	VV, VH
Passive	X	10.65	200	Н
Passive	K	18.70	200	Н
Passive	Ka	36.50	1000	Н

Anechoic chamber tests

Successful engineering flights in Dec. 2018 on Grand Mesa

Airborne Thermal IR

University of Washington - Compact Airborne System for Imaging the

Environment (CASIE)

TIR sensor suite:

- 3 TIR cameras
- KT-15 radiometer for TIR camera calibration
- Visible imagery camera

Science objectives:

- Subpixel temperature distributions for comparison with satellite observations
- Surface energy balance model evaluation

Grand Mesa IOP Observations:

- Calibrated surface temperature maps
- Visible imagery
- Ground-based snow surface temperature point measurements for validation of airborne IR data

Grand Mesa Ground-based instruments

Ground-based Instruments:

- Terrestrial Laser Scanner (TLS)
- Magnaprobe
- Ground penetrating radar
- Snow micropenetrometer (SMP)
- IceCube/IRIS
- Snow casting/Micro-CT
- Snow surface temperature
- In situ soil moisture and temperature sensors
- COSMOS Sensor, in situ soil moisture and SWE

Grand Mesa Ground Classification

Ground sampling locations were determined using ASO snow depth from 2017 and a vegetation classification scheme Locations were randomly selected to match spatial distribution of classification within SWESARR swath.

Grand Mesa Ground Sampling locations

Ground Observations:

- Snow depth
- Snow surface roughness
- Stratigraphy
- Density
- Wetness
- Temperature
- Grain Size
- Soil Characteristics

SnowEx 2020 - Current Collaborations/Coordination

In situ	Bi-weekly in situ sampling (Colorado, Idaho) Natural Resources Conservation Service (NRCS)
	LiDAR flights (East River, Colorado and San Joaquin/Lakes, California)
Α	ASO
i	Helipod LiDAR/thermal infrared (Boise River Basin, Idaho)
r	U.S. Army Corps of Engineers, CRREL
b	UltraWideBand radar (2-18 GHz) (Grand Mesa, Colorado)
0	Uni. of Alabama
r	Signal of Opportunity (SoOp) tower experiment (Fraser, Colorado)
n	JPL / U.S. Forest Service
е	Gamma flights (Colorado, possibly other states)
	NOAA National Operational Hydrologic Remote Sensing Center (NOHRSC)
	Stereo satellite imagery (e.g., World View, TerraSAR-X)
Satellite	U. of Washington, U.S. Army Corps of Engineers, CRREL
	Sentinal-1/2 C-band SAR
	FMI, KU Leuvens (will also provide 1km SWE products)

Modeling

SnowEx 2020

NASA SnowEx 2020 Experiment Plan

Draft (July 2019)

Draft Experiment Plan:

https://tinyurl.com/y4r6oz9d

